High aspect-ratio InGaAs FinFETs with sub-20 nm fin width

<u>Alon Vardi</u>, Jianqiang Lin, Wenjie Lu, Xin Zhao and Jesús A. del Alamo

Microsystems Technology Laboratories, MIT June 15, 2016

Sponsors: DTRA (HDTRA 1-14-1-0057), NSF E3S STC (grant #0939514) Lam Research

Outline

- Motivation
- Process technology
- Electrical characteristics
- Late news
- Conclusions

InGaAs planar Quantum-Well MOSFETs

- Superior electron transport properties in InGaAs
- InGaAs planar MOSFET performance exceeds that of High Electron Mobility Transistors (HEMT)

InGaAs planar Quantum-Well MOSFETs short-channel effects

- Short-channel effects limit scaling to L_g~40 nm
- 3D transistors required for further scaling

FinFETs

Intel Si Trigate MOSFETs

22 nm Process

14 nm Process

- FinFETs are use in modern state-of-the-art technologies
- Good balance of SCE and high ON current per footprint

InGaAs FinFETs

• Demonstrations to date: $W_f \ge 25 \text{ nm}$, $AR_c \le 1$

Goal: Sub-20 nm W_f Self-aligned III-V FinFETs

- Deeply scaled fin width, gate length and gate oxide
- High channel to fin width aspect ratio (AR_c)
- Self-aligned contacts
- CMOS-compatible processes and materials in frontend

Fin definition: Dry etch + Digital etch

- BCl₃/SiCl₄/Ar RIE of InGaAs nanostructures with smooth, vertical sidewalls and high aspect ratio (>10)
- Digital etch (DE): self-limiting
 O₂ plasma oxidation + H₂SO₄
 oxide removal

30 nm In_{0.53}Ga_{0.47}As, Si doped 3e19 cm⁻³

4 nm InP stopper

40 nm In_{0.53}Ga_{0.47}As, undoped

5 nm In_{0.52}Al_{0.48}As

Si δ -Doping: 4e12 cm⁻²

 $In_{0.52}AI_{0.48}As$ buffer

InP semi insulating substrate

- Highly doped cap
- 40 nm thick channel layer
- Delta doping underneath

Sputtered W/Mo contact
 CVD SiO₂ hard mask

- Sputtered W/Mo contact
- CVD SiO₂ hard mask
- Gate lithography
- Gate recess (Dry): SiO₂/W/Mo
- Active area definition

- Sputtered W/Mo contact
- CVD SiO₂ hard mask
- Gate lithography
- Gate recess (Dry):
 SiO₂/W/Mo
- o Active area definition
- Gate recess (Wet): Cap etch

- o Sputtered Mo contact
- o CVD SiO₂ hard mask
- o Gate lithography
- Gate recess (Dry): SiO₂/W/Mo
- o Active area definition
- Gate recess (Wet): Cap etch
 - Fin Lithography
 - Fin etch

HSQ

- Double gate FinFET
- Al_2O_3/HfO_2 , EOT = 1 nm

- o Sputtered W/Mo contact
- o CVD SiO₂ hard mask
- o Gate lithography
- Gate recess (Dry): SiO₂/W/Mo
- Active area definition
- Gate recess (Wet): Cap etch
- o Fin lithography
- o Fin etch
- o Digital etching
- ALD gate dielectric deposition
- o Mo gate sputtering

- Fin pitch 200 nm
- 10-50 fins/device

- Sputtered W/Mo contact
- o CVD SiO₂ hard mask
- o Gate lithography
- Gate recess (Dry): SiO₂/W/Mo
- o Active area definition
- Gate recess (Wet): Cap etch
- o Fin Lithography
- o Fin etch
- o Digital etching
- ALD gate dielectric deposition
- o Mo gate sputtering
- Gate head photo and pattern
- o ILD1 deposition
- Via opening
- o Pad formation

Long channel characteristics, $W_f=22 \text{ nm}, L_q=2 \mu \text{m}$

- S_{lin}=68 mV/dec
- Negligible DIBL
- Good electrostatic control over dry etched sidewalls

Most aggressively scaled device, $W_f=7 \text{ nm}, L_g=20 \text{ nm}$

- AR_c~6
- Poor drive current → Increased line edge roughness for W_f<10 nm

L_g and W_f scaling

L_g and W_f scaling

L_g and W_f scaling

• $W_f \downarrow \rightarrow L_g @$ onset of SCE \downarrow

• $W_f \downarrow \rightarrow L_g @ max I_{on} \downarrow$

ON resistance scaling

- $W_f \downarrow \rightarrow R_{on} \uparrow$
- For all W_f , R_{sd} =100 Ω ·µm
- Extremely low series resistance due to contact first and self-aligned approach

- $W_f \downarrow \rightarrow V_T \uparrow \rightarrow delta doping, quantization$
- $W_f \downarrow \rightarrow V_T$ rolloff $\uparrow \rightarrow$ line edge roughness ?

A. Vardi, IEDM 2015

Benchmark

Benchmark

• $W_f \downarrow \rightarrow g_m \downarrow$

Benchmark

- Si >> III-V
- MIT FinFETs > all other III-V
 - \rightarrow good use of sidewall conductance
- \rightarrow Our results improve the state-of-art

Post-submission results

Benchmark with latest results

New record results for sub-10 nm W_f InGaAs FinFETs

Conclusions

- Novel self-aligned gate-last FinFET:
 - Self-aligned gate to contact metals
 - CMOS process compatibility
 - Sub-10 nm fin width
 - AR_c>1 for the first time in III-V
 - Double-gate FinFET
- Outstanding performance and short-channel effects in devices with L_g =30 nm and W_f =22 nm
- Demonstrated subthreshold swing of 68 mV/dec in long channel devices

Thank you !